mEFhuc6W1n5SlKLH
Climate Action

University of Cambridge engineers awarded new funding for world’s first zero emissions cement

Three Cambridge engineers, Dr Cyrille Dunant, Dr Pippa Horton and Professor Julian Allwood, have filed a patent and been awarded new research funding for their invention of the world’s first emissions-free route to recycle Portland cement.

  • 01 June 2022
  • Press Release

Three Cambridge engineers, Dr Cyrille Dunant, Dr Pippa Horton and Professor Julian Allwood, have filed a patent and been awarded new research funding for their invention of the world’s first emissions-free route to recycle Portland cement.

Replacing today’s cement is one of the hardest challenges on the journey to a safe climate with zero emissions. There are many options to make cement with reduced emissions, mainly based on mixing new reactive cement (clinker) with other supplementary materials. However, until now, it has not been possible to make the reactive component of cement without emissions. The new invention achieves this for the first time within the parameters of established industrial processes.

The inspiration for Cambridge Electric Cement struck inventor Cyrille Dunant, when he noticed that the chemistry of used cement is virtually identical to that of the lime-flux used in conventional steel recycling processes. The new cement is therefore made in a virtuous recycling loop, that not only eliminates the emissions of cement production, but also saves raw materials, and even reduces the emissions required in making lime-flux.

The new cement was invented as part of the large multi-university UK FIRES programme led by Professor Allwood, which aims to enable a rapid transition to zero emissions based on using today’s technologies differently, rather than waiting for the new energy technologies of hydrogen and carbon storage.

Invention of the cement has been rewarded with a new research grant of £1.7m from EPSRC, to allow the inventors to collaborate with Dr Zushu Li at Warwick University and Dr Rupert Myers at Imperial College, to reveal the underlying science behind the new process.

The new grant will fund an additional team of researchers, to probe the range of concrete wastes that can be processed into Cambridge Electric Cement, evaluate how the process interacts with steel making, and confirm the performance of the resulting material.

Professor Allwood said ‘If Cambridge Electric Cement lives up to the promise it has shown in early laboratory trials, it could be a turning point in the journey to a safe future climate. Combining steel and cement recycling in a single process powered by renewable electricity, this could secure the supply of the basic materials of construction to support the infrastructure of a zero emissions world and to enable economic development where it is most needed.’